PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 10, Fasc. 1 (1989), p. 45-56

ASYMPTOTIC BEHAVIOUR OF THE INTEGRAL OF A FUNCTION
ON THE LEVEL SET OF A MIXING RANDOM FIELD *

BY
ILEANA IRIBARREN (Caracas)

Abstract. Let X = {X(1): t€R*} be a centered stationary-real
random field with as. differentiable paths. Let T be a rectangle of R?
and let F(f, T) denote the integral of the continuous function f over
a level curve %, of X for a fixed level x, observed in 7. We show
that if a field X satisfies some mixing condition, then F(f, T),
adequately normalized, converges weakly to the Wiener process
indexed in T The limit variance has a precise expression in the
Gaussian case and *-mixing case. A geometrical lemma shows cases
where the higher order moments of F(f, T) are finite.

1. INTRODUCTION.

In what follows, X = {X (¢): t€R?} denotes an a.s. differentiable cente-
red stationary random field. X is said to be isotropic if, given any keN and
fy, by, ..., 1, €R%,  the joint laws of (X(ty), X(ty), ..., X () and
(X(Qty), X(Qt3), ..., X(Q1y)) are the same when Q is any isometry in R X
is said to be affine, when it is equal in law to {Y(At): t eR*}, where Y is
isotropic and A: R* — R? is a linear self adjoint transformation. The angle 8,
defining the eigenvectors directions (cos #,, sinfy) and (—sin#y,, cos ) and
the respective eigenvalues A,, 4, specify the affinity 4. There is no loss of
generality in assuming A; > 1, >0, 1; 4, = 1. Cabafia [2] has proposed
estimators of the gffinity parameters k = (1—2%2/22)*? and 0, based on the
shape of the level curve of X, corresponding to a given level x.

The gradient process X (t) = ||X (1)]] (cos © (1), sin © (¢)) is determined by

the two real stationary processes [[X|| and ©. If X has as. differentiable

Jacobian and T is an open rectangle of R? the set %,={teT X(t)

=x, X(1) # 0}, for a fixed x, is a.s. a C' one-dimensional manifold, as it
results from applying the implicit Function Theorem. For f: (—n, n] =R

* Some of the results presented here are part of the author’s Doctoral dissertation at
Universidad Central de Venezuela.
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continuous and bounded we write
F(f, T)=ITI"" | f(@@)dS (),

where |T| is the area of T, dS is the surface measure of %, and the integral is
defined for every weQ as the usual integral over a differentiable manifold
[3]. F(f, T) is a random variable with respect to the o-algebra generated by
'X(@): teT). We write

P(T)=F(1, T), %(T)=F(cos20, T), <(T)=F(sin26, T).

Cabafia [3] and Wschebor [10] have proved by different methods the

formulae, known as Rice’s Formulae, for the moments of the variable F(f, T)
(Theorem 3). Making use of these formulae we obtain

, (E%)? +(E%)*
tan26, = E#/E%, g(k)= E& ’

where g is a certain function of the parameter k. These equations led Cabafia
to propose the following estimators for the affinity parameters 6, and k:

. (\f’%l(,lnqu.f/ﬂ(n)
FL(AT) ?

where AT is a dilation of T, 6, and k are consistent and asymptotically

1
0y = 5arg(4 (A1), Y(T), k=g~

" Gaussian under adequated mixing conditions. Cabana [2] has proved this

assertion when X is d-dependent, and he has computed the limit variance.
The aim of the present paper is to prove the asymptotical normality of

F(f, T) under less strict conditions of dependence. We prove, making use of -

a Functional Central Limit Theorem for strong mixing fields, that adequately

normalized F(f, T) converges weakly to a Wiener process indexed by the

rectangles of #2. Generally, the Central Limit Theorem for mixing variables
has the inconvenient that the variance is impossible to compute, but here we
compute the limit variance in the Gaussian and *-mixing cases and show
that this variance has the same expression that in the é-dependent case (see

Since the existence of higher order moments plays a fundamental.role,
we improve Wschebor’s results [11], giving conditions under which the p-th
order moment of F(f, T) is finite.

2. FRAMEWORK

We begin with
Definition 1. Let ¢ = {£(f): teR?} be a stationary random field. We
say that & is strongly mixing with coefficient o, or a-mixing, if for any Borelian
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sets U and V
sup {|P(4 nB)—P(A)P(B): Aea(U), Bea(V)} <a(p(U, V))

and a(p) =0, p—>oc0. Here p(U, V) is the Euclidean distance and o (U)
= o {¢(t): teU). In the same manner, we say ¢ satisfies a *-mixing condition
with coefficient  if

' ﬂpumm_
SUPAP(a) P(B)
and ¥ (p) =0, p—o0.

Let & = {£(r): teZ?) be a discret strong mixing stationary centered real
random field and ‘ '

1‘: Aee(U), B EO‘(V)} <y(pU, V)

Sn = Z éj:

1€j<n
where j < n means j, <ny, j, <n,, ..., J;, <ny. We prove
Lemma 1. If E|&)**? < oo and the mixing satislies

[+ 4}
Z rd—laé/(2+6)(r) < 00,
r=1

then

0y | Y B¢y <,

. szd

(i1) I~ 'ESZ = ¥ E(£¢) =0> when n— o0,
) jeZd '

where n — o0 means min n; > o0 and |n| =nyn,...n,.

1sj<d .

Proof Lemma 3Jof Billingsley [1], p. 172, and the inequality of
moments for strong mixing fields [7] give the proof.

‘Let T? be a Cartesian product of [0, 1] = R. We will denote by C,
the set of continuous functions on T provided with the uniform metric,
and D, is the Skorohod function space on T¢. A subset B of T
B=\{u=(u,...,u): s;<u;<t;} is called a block, and increment ¢(B) of
¢ around -a block B is given by

EB) = ¥ (—1FHE(ste(t—s)),

eci0, 1 ‘

where |¢| =g+ ... +¢ if e =(g1, ..., &).
The Wiener process W = {W(t): t€T?} on T? is characterized by
@) P{WeC,} =1;
(b) if By, B,, ..., B, are pairwise disjoint blocks in TY, then the incre-

L EE
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ments W(B,), W(B,), ..., W(B,) are independent normal variables with
means zero and variances |B,|, [B,|, ..., | By, where | -| denotes the d-dimensio-
nal Lebesgue measure in
If o is a class of sets, the Wiener process indexed in &/, W
= |W(A): Ae/}, is the Gaussian centered process with covariances
cov{W(A), W(B)) = |AnB| for A, Be.</. If .«/ is the class of the blocks in
TY, denoted by <4, |W(B): Be#’ is the increments process of
{W(t): teT?) around the blocks B’s, It resuits that W = {W(B): Be#*) is
- continuous [8]. - :

3. MAIN THEOREM
Let T =[—a, a) x[—b, b) be a half-open rectangle in R*. We divide the
plane in a grid {7;: jeZ?}, where Ts are all rectangles with the same

dimension as T, such that if j = (;, jo), T; has center C; = (2aj;, 2bj,). For 4
= (41, 4;) €Z? we define the following d11at1on of T

AT:{ T if 4, =24,=1,
LU

T, if Ay >1o0r i, >1,

jeQ;
where Q; = [jeZ®: —(A—-1)<j<A—1}. Note that |AT|=|Q,{|T], where
IQJ.‘ = Card (QA.) = (2;{1 — 1) (2/12 - 1) alld

F(f, D=1QI™"' ¥ F(£, T)

jeg;
THEOREM 1. Suppose that the field X is strongly mixing and
(i) the mixing satisfies Y k9*Wa/2D=14%@*d k).

k=1
(i) E[F(f, T)]*"% < oo for some q=2 and 6 > 0;
(iii) the variance defined by Lemma 1 has the form

=TI {10, . /)dt >0,
RZ
where

I(s, t,f) = f f(6)do f (@) Ha(x, 0, g
with - i
Hg(x, 0, ¢} = Pxg,xe), 609,000 (%> X, 0, ¢) x
 xE[X@IXOWXE =X@=x,0() =6, 60) =¢]-
~Pyeg.o0 (s OELIXX /X (9) = x, ©(t) = 6]
Pxa.on(x. @ E[IXOI/X () = x, () = ¢],

where Py o denotes the joint density of X and @.
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. Then ithe ﬁeld {Z,(T): TeR?), defined by

A T
Z,(T) =‘['QU'2' |

1/2 ' ,
] [F(f, AT)—-EF(f, T)],

converges weakly to the Wiener process indexed in #%, {W(T): Te#*).

Proof. We can define the following discret random field: for every
jeZ% Y;=F(f, T)—EF(f, T). It is not difficult to see that if the field X is
strongly mixing, then so is Y = {Y;: jeZ?}, and the mixing coefficient of Y is
less than o (k— h), where « is the strong mixing coefficient of X and 4 is the
length of the diagonal of ‘T:-In fact, if N €22, because F(f, T) is measurable
we have , '
a{Y;: jeN} co{X(t): tel|) T}

o JoN

and, therefore,

) )

Je

Je

sup {|P(4 n B)—P(A)P(B): AEO‘(N), Beg(N)} <a(p(U T,
N

We conclude that Y is strong mixing and its mixing coefficient satisfies
().
On the other hand,

|772
Y Y=y 3 Y.

(2l 2)”2 i, R Py

A(T)_

The last equation results from the change A—1 = [n]. Accordingly, this
suggests making use of a Functional Central Limit Theorem for mixing
multiparametric processes.

ProrosiTioN 1. Suppose Y— {v;: ]Ezd} is a strongly mixing centered
stationary real random field such that for some even number q = 2 and § > 0,

o
() Y k4GB 1 g0Mat O () < o0,

@ Rt < oo,
fA deﬁned by Lemma’ 1 is positive, then, for teT?,
Z,®)=(nc®)”12 Y Y,
0<j<([nt]
converges weakly to the d-parameter Wiener process {W(t): t€T%}.

Proof. The technics used in this proof are essentially those of Billings-
ley [1] (Theorem 20.1) in the generalization made by Deo [5] for multipara-
metric processes. The conditions EZ,(t) =0 and EZ2(t) —|t| as n =0 are

‘4 — Probability Vol. 10, Fasc. 1
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trivially seen to be satisfied. It remains, therefore, to be proved the uniform
integrability of Z2(t) and its tightness.

In order to prove that we will make use of the following property: if the
assumptions of Proposition 1 hold, then

(1) ' E|Z Y|* < K|4|7?

for some even integer, where K is a finite constant only dependmg on g and
d, the moments of Y and a [9].

" The uniform integrability of Z2(t) is a consequence of the prev1ous
property and the following inequality:

E(S2s2)>a) < a®7 92 |n| 92 E|S,J2.

The tightness condition comes from the following Oscillation Lemma,
due to Doukhan-Portal [6]. This lemma is more powerful than the one we
require because it gives a precise rate for oscillation, and we need to modify
it a little, since originally it is referred for empirical process.

LemMa 2. With the same assumption of Proposition 1, for peN and some
0 <8 <1 such that p(1—~90) >d we get

P isup {iZ,(s)=Z,@): lls—tl <n*7'} = kn™*} <kn™",

where 0 =[p(1—B(1—08))—d(1—p))/(2p+1) and k is a constant depending
only on p and d, the moments of Y and a. Here ||s|f = Y |[sj.

1<j<d
Proof. The proof comes from the inequality

E|Spug— Sl <E | Z qu < K |n|?% ||t —s)|¢?
[m]<j<[ns] .
that is a consequence of (1) and the proper definition of Z,(t). Lemma II14
of Doukhan-Portal [6] holds trivially in this case and the rest of the proof

~ follows without change.

The proof of Theorem 1 is completed by maklng use of Proposition 1
(taking d = 2) and noting that Z,(7T) can be expressed

Z(N=(ne) [ ¥ Y+ ¥ Y+ Y Y+ ¥ Y

0K j<[m) [n(-1]<j<0 0<jg €[nyty] [n(—t1)1<jy; €0
) [”2( 12)]\]2\ 05]2\["2!2]
which converges weakly to

Wity, )+ W(—=ty, —t))=Wity, —t)—W(—ty, t;) = W(T).

4. APPLICATIONS STUDY OF THE VARIANCE ¢?

The expression for the variance 6 in Theorem 1 (jii) is a consequence of
the Rice formulae for the moments of F (f, T). Cabaiia [3] has proved that if
the field X has a Jacobian as. Lipschitz continuous and the Lipschitz
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constant does not depend on w, for every t € T the probability distribution, of
X(2) has density Py, there is a joint density of X and X and-it is
continuous, and the function f is non-negative and Lipschitz continuous, then
the Rice formulae hold even if they are infinite, Moreover, if X is Gaussian,
instead of the first condition one can demand that. X and the derivative of its -
covariance function satisfy a Lipschitz condition in any compact K.

4.1. Gaussian case.

LeEmMMA 3. Suppose X is a Gaussian field with covariance function T.
Suppose also X satisfies the assumptions of the previous section. If T’ has two
derivatives, and I (u), I' (W) and I'(u) tend to zero as |u| — co, then the variance
has the form (i) of Theorem 1.

Q. Var F(f, AT) = |0, *E| ¥ ¥ > ¥ E(Y%, ) = &

js@j jez?
as |A| = oo and, therefore, we have to prove that

(D |IQu VarF(f, AT)—0o?|

=g~ ITI"> [ dsdt [ £(8)dB [ f(e)Hy(x, 6, p)do)|

AT x(AT)' -n -n

tends to zero as A — co. Here (AT) is the complement of AT in R? and the
equation follows from Theorem 2, the expression of the variance ¢* and
stationarity of the field. ‘

In order to prove that we will see that

(A) |P X(s),X(0) (x, x)— PX{s) (x) P X() (x)} >0 as p(s, 1) >0

and

B) [P{X(s)el, X()eJ/X(s) = X(t) =x! —P X (s)el/X (s) = x) x
xP{X({)eJ/X(t) =x}| =0

as p(s, t) oo, where I and J are both rectangles of R%. The proof will

follow from (A) and (B) arguing as in the last part of the proof of Lemma 4.

We can assume without loss of generality that X is normalized in such a
way that I'(0) = —I'(0) = 1. We see that (B) is less than or equal to

[PiX(s)el, X()eJ/X(s) = X(t) = x}—P (X (s) €l/X(5) = x} x
xPiX()eJ/X(s) =X () = x|+ |
+[P{X(s)el/X () = X (1) = x}—P X (9) el/X (5) = x)| +
+P{X () eJ/X(s) = X (1) = x} - P{X () eJ/X (1) = x}.
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Since X is Gaussian, X and X conditioned by X are Gaussian as well,
and we can write the first term as

(b) . [PiZ(s)el, Z()eJ}—P{Z(s)el} P{Z(H) e},

where 'Z_(S) and Z (1) are two Gaussian variables with parameters m; = —m,
= (W) x/(1+ T (), where u=s—t, '
T w

1-T%*w)’

Tl wIt ) »
1-T2 ()

VarZ(s)=VarZ(t) =1+

cov(Z (), Z@O)= —TI'(w+

If X denotes the covariance matrix of the joint distribution of Z(s) and
Z(t), we denote by A the matrix which coincides with X in the diagonal and
has zeros as other elements, and by m the column vector Wthh has m, and
m, as coordinates. Hence (b) can be written as

-1/2
-9525%_’ [ expi—(y—m)Z ' (y—m)jdy—
I xJ
det A)~ 12 _ ,
_L_E%__ [ expi—(y—mA~ (y—m)}dy
. IxJ

det )~ 12 —(det A)~ V3| _ .
< (det 2) 2; ) 1 | expi—(y—m A~ (y—m) dy+
IxJ ’

det2)~ 1% - -
+(_% [ l1=exp {—(y—m[Z~ ' =4 T(y—m)}|dy.
IxJ

Now according to the assumption and to the form of the variance and
covariance, (b) tends to zero as [u] — c0.

The other terms have a similar behaviour, since both can be thought as
|P{Z, el —P{Z,eJ)|, where Z, and Z, are two Gaussian variables with
parameters _

I'(u)x rwr (u)
my -—I+-F(H)’. m;—O, VarZ, —l+m,

Finally, (A) is deduced easily from the assumption, since the variables

Var22 = 1.

are centered, and the covariance matrix of (X (s), X (1)) has the form

(1 T (u)
I'w 1

which tends to the identity for |u| — co.
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4.2. The *-mixing case.

LemMa 4. Suppose that X satisfies the Cabana’s assumptions (see the
beginning of section 4) and also

(ii) Pyq (%) and E[||X|[/X = x] are uniformly bounded in a neighbourhood -
V of x: then the variance ¢* has the form (iii) of Theorem 1.

Proof. Like Lemma 3 we have to prove that expression (2) tends to
zero as [A| —oo. This expression is smaller than

T R

K2)Q,)"H 7™ [ dsdt \ | [Hy (x, 0, qo)ldﬂdqﬂ

AT x(AT)’ —f—

It is not difficult to see that

H,(x, 8, ¢) = lime™* [E[Z, (x 6, a)Z(x @, 8 ]—-EZ|(x, 0, S)EZ (x, @, 8],

&£—0

where

Z(x, 0, &) = {|X ()l lfxsx'(s)sxmlws ) <O+

Smce the integrands are positive, an application of Fatou’s Lemma and
the mequahty of moments for *-mixing varlables [7] give :

7|:

f IHs,(x 0, o) dfde

<Y (p(s, )liminfe™* [EIZ (x, 8, &)|db fE}Z (x, @, &) do.
£—0
Ma_king use of the conditional expectation properties and Fubini’s
Theorem, we obtain that each integral of the right-hand member of the
previous inequality is majorated by ¢ CC’, where C and C’ are bounds of
Px0)(x) and E[||.X (s)|l/X (s) = x] respectively, both uniform in a neighbour-
hood of x which contains the interval [x, x+¢]. Hence, substltutlng in the

last expression, the limit in & dlsappears and the proof will be completed if
we show that

(©) Q47 MTI"> | ¥(p(s, D)dsdt >0 as 4] —>o0.

AT x(AT)’
Let us denote by m; and M, the sets
m; = |(s, t)eR*: s€dAT, t¢AT, p(s, 1) < p(A)},
M; = (s, t)eR*: selT, t¢ AT, p(s, t) > u(Al,
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where pu(d) = o[(zA; —1)(z4,—1)] and p(d) >0 as A »o0. If L is a bound
of Y, then )

[{(p(s, 0)dsdt < Limy).= Lxo[Q,/T1].

On the other hand,
_(_[l/f(b(s, Ddsdt = [ds [ W(p(s,0))dt =QIT| | ¢ (ul)du,

ny AT p(s)>u(A)} flul > u(A)}

 therefore (c) is less than

@ITHTIT2 L xoUQUIT+ITITY | y(lu)du

{lul > p()}

Whieh- tends to zero as A — oo.

5. EXISTENCE OF THE MOMENT OF F(f, T)

' A_ssumption'(ii) in Theorem 1 requires the finiteness of the g+4 order
moment. The Wschebor Theorem for the Rice formula [11] gives conditions

for the validity of the formulae and also guarantees their finiteness. However
the following lemma, suggested by Wschebor, shows in a geometrical way
. how the problem of moments existence can be studied without looking at the

complicated integrals in the Rice formulae.
- Let T = T, x T, be the Cartesian product of two intervals of R. We call
1-sectzon of X determined by t;, which w111 be denoted by Xt1’ the
nlparametrlc process .

X1 T,>R, t—=X; () =X(,1).

In the same way we can define X2 Obviously, the 1-sections are all

) measurable for every t; (i=1,2). Since X is stationary, it is sufficient to
.cons1der the i-sections X' determmed by t; =0. If X is as. of class C?, then
as every i-section is as. of class CP. :

In. what follows we will take f =1 and write #(%,)=F(1, T). Let

NE (T ) “be the number of crossing of the process X* with the level x in the
mterval T, -where I;é j, i, j-=1, 2. Moreover, let

Z, = sup |(X)*? (1))

eT

LEMMA 5 Suppose that the field X and its derivative X have a.s.

.‘connnuous paths “Then -

)< [ NA(T)diy+ [ NA(Tdes.

Ty Ty
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CoroLLARY 1. With the same assumptions
E[ZL (417} V? < |THE[Ne(T)IPV P+ TIH{EINZ(T2)17} 2.

CoROLLARY 2. Suppose that X is a Gaussian field, with covariance function
I, which is normalized (I'(0) = —I'(0) = 1). If, for u, veR,

2 C|u|3

(0, u), (0, 0)) = E(X(0, 1) X(0, 0)) = 1+ =+

>+t +o(u’),

:C?

(v, 0), (0, 0)) = E(X (v, 0) X (0, 0)) = 1+"7+ :

for u and v in a neighbourhood V of O and C and C' positive constants, then
E[Z (%)) <o for every k=1,2, ...
Proof. -The proof follows from Lemma 5 and Theorem 4.1 in [4].

CoRoLLARY 3. Suppose X has a.s. class C? paths (p = 2) and .
(i) For every t, €Ty, (X2 (1)), X*(t,)) has joint density uniformly bounded by C
and for every t; € Ty, (X' (t,), X'(1,)) has joint density uniformly bounded by C.

(i) Let m < 2p—2 if there is an r > 2m/(2p—2—m) such that E|Z})" < o
for every p=1,2, ... and i=1, 2. -

Then

(E|2(4 )"} < Ly | T (B|Z2F)Um+ Ly | Tyl (E|ZAF} V™4 Ly < oo,

+o(v})

where L,, L, and L; depend only on p, m, r, |T| and C.

CoRrOLLARY 4. If X has a.s. class C* paths, if (i) of Corollary 3 holds and
E|Z!| <o for every p=1,2,... and i =1, 2, then

E[Z(%¢)]" <0 for every m=1, 2, ...

Proofs of Corollaries 3 and 4 follow from Lemma 4 and Corollaries 3
and 4 of Wschebor [11] (p. 36).

Proof of Lemma 5. The proof is completely geometrical and the same
idea- can be extended for more general situations (dimension > 2).
Suppose %, is a polygonal. Every segment of %, has length less than the
sum of the lengths of its projections over the coordinates axes. If we take a
partition in every interval T, and T7,, the length of every semi-interval
contributes to the sum every time the i-th section process determined by t; in
the semi-interval, crosses the level x in the interval T(i # j). Therefore
N M
L(6)< X No(D) -1+ Y NH(T) 55711,
k=1 h=1
where {10, ¢}, ..., t} and {13, ¢, ..., t}f} are both partitions of T; and T,
respectively. Lemma 5 follows by taking the limit when the sizes of the
partitions tend to zero.
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