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Absrract. Let X = {Xtt): t ER' ]  be a centered stationary real 
random field with a.s. differentiable paths. k t  T be a rectangle d R' 
and let F(f, T )  denote the integral of the continuous function ,f over 
a level curve gX of X for a fixed level x, observed in T We show 
that if a field X satisfies some mixing condition, then F [ , f .  'J3, 
adequately normalized, converges weakly to  the Wiener process 
indexed in Z The hrmt variance has a precise expression in the 
Gaussian case and *-mixing case. A geometrical lemma shows cases 
where the higher order moments of F ( f ,  T) are fimte. 

1. INTRODUCTION. 

In what follows, X = (X(t): t € R 2 )  denotes an a.s, differentiable cente- 
red stationary random field. X is said to be isotropic if, given any k EN and 
t l ,  t2, . . . , tk €R2, the joint laws of (X(tl), X(t,), . . . , X(tk)) and 
(X(Qtl), X(Qt2), . . ., X(Qtk)) are the same when Q is any isometry in R2. X 
is said to be affine, when it is equal in law to {Y(At): t E R ~ ) ,  where Y is 
isotropic and A: R2 +R2 is a linear self adjoint transformation. The angle 0, 
defining the eigenvectors directions (cos 0,, sin 8,) and (-sin O,, cos 8,) and 
the respective eigenvalues i,, A, specify the affinity A. There is no loss of 
generality in assuming A, 2 jL2 > 0, AI A2 = 1. Cabaiia [2] has proposed 
estimators of the affinity parameters k = (1 -2f/ij)1/2 and Qo based on the 
shape of the level curve of X, corresponding to a given level x. 

The gradient process ~ ( t )  = 112 (t)((  (cos 0 (t), sin O (t)) is determined by 
the two real stationary processes 11x11 and 0. If X has as .  differentiable 
Jacobian and T is an open rectangle of R2, the set %, = {t ET X(t) 
= x, ~ ( t )  # O), for a fixed x, is a.s. a C1 one-dimensional manifold, as it 
results from applying the implicit Function Theorem. For f: (- n, n] + R 

* Some of the results presented here are part of the author's Doctoral dissertation at 
Universidad Central de Venezuela. 
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continuous and bounded we write 

F (f, T )  = 1 TI ' f f (O ( t ) )  dS (t), 

where IT1 is the area of 7: dS is the surface measure of %,, and the integral is 
defined for every w EQ as the usual integral over a differentiabIe manifold 
[3]. F(f, T )  is a random variable with respect to the s-algebra generated by 
{X(r): r E T) . We write 

P(T) = F(1, T ) ,  % (T) = F(COS 28, T ) ,  +Y'(T) =-F(sin28, T). 

. CabaEa [3]-and Wschcbor 1101 have proved by different methods the 
formulae, known as Rice's Forniulae, for the moments of the variable F(f, T )  
(Theorem 3). Making use of these formulae we obtain 

where g is a certain function of the parameter k. These equations led Cabaiia 
to propose the following estimators for the affinity parameters 8, and k: 

where i T  is a dilation of 8, and k are consistent and asymptotically 
Gaussian under adequated mixing conditions. Cabaiia [2] has proved this 
assertion when X is &dependent, and he has computed the limit variance. 
The aim of the present paper is to prove the asymptotical normality of 
F(f, T) under less strict conditions of dependence. We prove, making use of 
a Functional Central Limit Theorem for strong mixing fields, that adequately 
normalized F(f, T )  converges weakly to a Wiener process indexed by the 
rectangles of W2. Generally, the Central Limit Theorem for mixing variables 
has the inconvenient that the variance is impossible to compute, but here'we 
compute the limit variance in the Gaussian and *-mixing cases and show 
that this variance has the same expression that in the 8-dependent case (see 
C21)- 

Since the existence of higher order moments plays a fundamental role, 
we improve Wschebor's results [ll], giving conditions under which the p-th 
order moment of F(f, T) is finite. 

We begin with 
Def in i t ion  1. Let r = { r  (t): t EP} be a stationary random field. We 

say that { is strongly mixing with coefficient a, or a-mixing, if for any Borelian 
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sets U and V 

s u p ( I P ( ~  n B ] - P ( A ) P ( B ) :  A E O ( U ) ,  B E U ( V ) ~  < a ( p ( U ,  V)) 

and a (p) +0, p + a. Here p ( U ,  V) is the Euclidean distance and a ( U )  
= cr ( ( ( t ) :  t E Uj . In the same manner, we say 5 satisfies LZ *-mixing condition 
with coefficient 1/1 if 

and $(p)+O, p+w. - -  - 

Let -l = It(t): t € Z d )  be a discret strong mixing stationary centered real 
random field and 

where j ,< n means j ,  < H i ,  j ,  6 n,, . . . , j, < nd. We prove 
LEMMA 1. If E150(2'" ' m and the mixing satislies 

then 

(ii) I n l - 1 E S , 2 - + ~ E ( < , < j ) = u 2  w h e n n - + m ,  
- j d  

where n +a meam min nj +cc and in1 = n, n, ... n,. 
1 d j d d  

Proof.  Lemma 3 of Billingsley [I], p. 172, and the inequality of 
moments for strong mixing fields [7] give the proof. 

Let Td be a Cartesian product of [0, I] c R. We will denote by Cd 
the set of continuous functions on T' provided with the uniform metric, 
and Dd is the Skorohod function space on Td. A subset B of Td, 
B = (u  = (u, ,  . . . , ud): sj < uj < tjl is called a block, and increment 5 (B) of 
5 around a block B is given by 

where / & I  = E l +  ... +Ed if E = ( E ~ ,  ..., E ~ ) .  

The Wiener process W = [ W ( t ) :  t ET') on Td is characterized by , 

(a) P { W € C d )  = 1; 
(b) if B , ,  B,, . . ., 3, are pairwise disjoint blocks in r', then the incre- 
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ments W (B,), W (I?,), . . . , W(B,) are independent normal variables with 
means zero and variances IB, I ,  IB,I, . . ., IBk19 where I . I denotes the d-&merasio- 
nal Lebesgue measure in Td. 

If .d is a class of sets, the Wiener process indexed in .d, W 
= iW(A): A E . ~ ] ,  is the Gaussian centered process with c~variarices 
cov (W(A) ,  W ( 3 ) )  = IA n BI for A,  B €14. If ,d is the class of the blocks in 
, denoted by .#, IW(B): B E.@] is the increments process of 
1 W ( t ) :  t ET'~ around the blocks Fs. It results that W = [ W(B):  B E.@) is 
continuous [$I. 

. . 3 W N  THEOREM 

Let T = [-a,  a) x [- b, h) be a half-open rectangle in R2. We divide the 
plane in a grid { q: j EZ' ) ,  where 7;.'s are all rectangles with the same 
dimension as such that if , j  = (j, , j,), 7;: has center C j  = (2aj, ,  2bj,). For .i 
= (A,, ,IZ) € Z 2  we define the fo1Iowing dilation of T 

where Q , =  [ j € Z 1 :  - ( A - l ) G j < j b - l j .  Note that IIZTl=IQIIITi, where 
IQAJ = card (QJ = (2R,  - I) (21, - 1) and 

THEOREM 1.  Suppose that the .field X is strongtj) mixing and 
00 

(i) the mixing sntisjies k(q + [q121'- [x''(~+') 

k =  1 
( k )  ; 

(ii) E [ F ( f ,  T ) ] " ~  < co for some q 2 2 and 6 > 0: 
(iii) the uariance defined by Lemma 1 has the form 

aZ = \TI-' S I ( 0 ,  t ,  f)dt > 0,- 
f$ 

where 
n x 

t ? f )  = j f (OIde 1 f ( cp )  Hs*(x,  0, c p ) d ~  
- lt - II 

with 

where PX,@ denotes the joint density of X and 8. 
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I 
Then sthe field {Z,(T): T E R ~ ] ,  defined by 

converges weakly to the Wfe~zer process indexed in g2, {TICI(T): T ~ d ' j  . 
Proof .  We can define the following discret random field: for every 

j fZ2, 5 = F (f, ?;) - EF(f, ;Tj). It is not difficult to see that if the field A' is 
strongly mixing, then so is Y = {q: j sZZ)-, and the mixing coefficient of Y is 
Iess than a ( k -  h), where a is the strong mixing coefficient of X and h is the 
length of the diagonal of 7: In fact, if N €Z2, because F ( j; T) is measurable 

- .  . we have - 

and, therefore, 

We conclude that Y is strong mixing and its mixing coefficient satisfies 
(0. 

On the other hand, 

The last equation results from the change 1.- 1 = [nt]. Accordingly, ihis 
suggests making use of a Functional Central Limit Theorem for mixing 
multiparametric processes. 

PROPOSITION 1. Suppose Y = {q: j € Z d )  is a strongly mixing centered 
stationary real random ,field such that, for some even number q 2 2 and 6 > 0, 

02 

(9 1 kd(3/2)q- 1 a61(q + 6 )  Ck) < x , 
I k =  1 

(ii j E lYo/q+" (CO. 
- -. 

If a', defined by Lemma 1, is positive, then, for t E Td, 

z,(t) = (In] 02)-'I2 C 5 
0 6 j < [n t ]  

converges weakly to the d-parameter Mener process {W(t):  t € T d )  
Proof .  The technics used in this proof are essentially those of Billings- 

ley [I] (Theorem 20.1) in the generalization made by Deo 151 for miltipara- 
metric processes. The conditions EZn(t) + 0 and EZ: (t) + lrl as n 4 cc are 

4 - Probability Vol. 1% Fasc. I 
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, . trivially seen to be satisfied. It remains, therefore, to be proved the uniform 
I integrability of Z;(t) and its tightness. 

In order to prove that we will' make use of the following property: if the 
assumptions of Proposition 1 hold, then 

for some even integer, where K is a finite constant only depending on q and 
d, the moments of Y and a [9 ] .  

The uniform integrability of Z; ( t )  is a consequence of the previous 
property and the following inequality: 

The tightness condition comes from the following Oscillation Lemma, 
due to Doukhan-Portal [6]. This lemma is more powerful than the one we 
require because it gives a precise rate for oscillation, and we need to modif!i, 
it a little, since originally it is referred for empirical process. 

LEMMA 2. With the same assumption of Proposition 1 ,  for p E N  and some 
0 < 6 < 1 such that p( l -b)  > d we get 

where 8 = [ p  (1 - P (1  - 6 ) )  - d (1 - P)]/(2p -t 1) and k is a constant depending 
- 

only on p and d ,  the moments of Y and ol. Here llsll = Isjl- 
l < j d d  

Proof .  The proof comes from the inequality 

that is a consequence of (1) and the proper definition of Z,(t). Lemma 111.4 
of Doukhan-Portal [ 6 ]  holds trivially in this case and the rest of the proof 
follows without change. 

The proof of Theorem 1 is compIeted by making use of Proposition 1 
(taking d = 2) and noting that Z ,  (T) can be expressed 

which converges weakly to 

4. APPLICATIONS STUDY OF THE VARIANCE a* 

The expression for the variance a2 in Theorem 1 (iii) is a consequence of 
the Rice formulae for the moments of F(f, T). Cabaiia [3] has proved that if 
the field X has a Jacobian as .  Lipschitz continuous and the Lipschitz 
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constant does not depend on o, for every t E T the probability distribution. of 
X ( t )  has density P,(,,, there is a joint density of X and x and it is 
continuous, and the function f is non-negative and Lipschitz continuous, theh 
the Rice formulae hold even if they are infinite. Moreover, if X is Gaussian, 
instead of the first condition one can demand that. x and the derivative of its , . 
covariance function satisfy a Lipschitz condition in any compact K. . 

I 1  

4.1. Gaussian case. 
LEMMA 3. Suppose X is a Gaussian field with covariance function f. 

Suppose also X satisjes the assumptions of the praviuus section. If r has two 
derivatives, and f (u), f ( r i )  und p(u) tend to zero as lul 3 m, then the variance 
has I he &;dm (iii) of Theorem 1 .  

Proof.  Making use -of Lemma 1, we have 
. .. 

as Iht + m and, therefore, we have to prove that 

tends to zero as 2 + m. Here (AT)' is the complement of R T in R2, and the 
equation follows from Theorem 2, the expression of the variance q2 and 
stationarity of the field. 

In order to prove that we will see that 

(A) IPx(~),xI~, (x, x)  - Px,, (4 PP,  ($1 -+ 0 as p ( s ,  t) + co 

and 

(B) I P ( X ( ~ ) E I , X ( ~ ) E J / X ( ~ ) = X ( ~ ) = X ) - P ( X ( S ) E I / X ( S ) = ~ ) ~  

as p(s, t )  +a, where I and J are both rectangles of R2. The proof will 
follow from (A) and (B) arguing as in the last part of the proof of Lemma 4. 

We can assume without loss of generality that X is normalized in such a 
way that r(0) = -T(O) = 1. We see that (B) is less than or equal to . , 
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Since X is Gaussian, X and x conditioned by X are Gaussian as well, 
I .  

I '  and we can write the h s t  term as 

I where Z (s) and Z (t) are two Gaussian variables with parameters nl, = - rn, 
= ~ ( u ) x / ( l + r ( u ) ) ,  where u = s - t ,  

r (4 (4 
Var Z (s) = Var Z ( t )  = 1 + 

1-r2(u) ' 
. . .. - . . r (u) f (u) f r  (u) 
cov (2 (s) ,  z ( t ) )  = - ji (11) + I - r2 (u)  

If C denotes the covariance matrix of the joint distribution of Z(s) and 
Z ( t ) ,  we denote by A the matrix which coincides with 2 in the diagonal and 
has zeros as other elements, and by rn the columi~ vector which has nz, and 
nz, as coordinates. Hence (b) can be written as 

(det Z)- l t 2  + r 11-exp (-(y-m)[Z-f-A-l](y-m)t)(dy.  
2~ I ~ J  

. 

Now according to the assumption and to the form of the variance and 
covariance, (b) tends to zero as lul +a. 

The other terms have a simiIar behaviour, since both can be thought as 
(P (Z, E I ]  - P {Z2 E J )  1, where Z 1  and Z, are two Gaussian variables with 
parameters 

(det 2) - 'I2 (' exp I - ( y - n z ) Z 1  (y-pn) ' ldy-  
2n J L J  

r [u) x i. (u) P (u) m, =- m , = O ,  VarZ, = 1 +  , VarZ, = 1. 
i + r ( ~ ) '  1 - r 2 ( u )  

Finally, (A) is deduced easily from the assumption, since the variables 

are centered, and the covariance matrix of ( ~ ( s ) ,  X( t ) )  has the form 

which tends to the identity for (u( j a. 
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4.2. The *-mixing case. 

LLMMA 4 .  Suppose that X satisfies the Cabnfiu's nssurnpiior~s (see the 
beqin~i71y qf sectiorz 4) and n[so 

(1;) P,,,, (x) and E [ I I X I I / X  = x] are uniformly bounded in a neighbnurhood 
V of x: then the variance g2 ~ L I S  the form (iii) of Theorem I .  

Proof.  Like Lemma 3 we have to prove that expression (2) tends to 
zero as /A] +m. This expression is smaller than 

It is not difficult to see that 

where 

Z s ( x .  8 ,  6 )  = I J ~ ( S ) I I  I t i < x ( s l < x + E ) ~ ( o s q ~ ) s o + ~ ) .  

Since the integrands are positive. an application of Fatou's Lemma and 
the inequality of moments for *-mixing variables [7] give 

Making use of the conditional expectation properties and Fubini's 
Theorem, we obtain that each integral of the right-hand member of the 
previous inequality is majorated by c2 CCr, where C and C' are bounds of 
Px(,,(x) and E [llX(s)ll/X(s) = xJ respectively, both uniform in a neighbour- 
hood of x which contains the interval [x, x+E]. Hence, substituting-in the 
last expression, the limit in E disappears and the proof will be completed if 
we show that 

Let us denote by rn, and MA the sets 

nz, = [(s, t ) € R 4 :  SEAT, t4AT p(s, t) < p(A)), 
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where p(R) = o [ ( z l ,  - 1)(zA2- I)] and p(A)  m as A +a. If L is a bound 
of J/, then 

On the other hand, 

therefore (c) is less than 
.. . 

which tends to zero as A + m. 

. . 5. EXISTENCX OF THE MOMENT OF F(f, 71 

Assumption (ii) in Theorem 1 requires the finiteness of the q+S  order 
I moment. The Wschebor Theorem for the Rice formuIa [ll] gives conditions 
I 
I for the validity of the formulae and also guarantees their finiteness. However 

I the following lemma, suggested by Wschebor, shows in a geometrical way 
how the problem of moments existence can be studied without looking at the 

I ~~mpl ica ted  integrals in the Rice formulae. 
Let T = T,  x T, be the Cartesian product of two intervals of R. We call 

1-section * .  of X determined by t , ,  which will be denoted by X:,, the 
uniparametric , ' process 

X:,: T , + R ,  t + X : , ( t ) = X ( t , , t ) .  

In the same way we can define X:,. Obviously, the 1-sections are all 

measurable for every ti (i = 1 ,  2). Since X is stationary, it is sufficient to 
cogsider the i-sections X' determined by ti = 0. If X is as .  of class Cp, then 
as .  every i-section is as .  bf class CP. - .  

In what follows we will take f = 1 and write 9(%3 = F(1, T). Let 
A?L(7;-) be the number 'of ,crossing of the process X' with the level x in the 
interval Ti, whefe i # j, i, j = 1, 2. Moreover, let 

2; = sup /(Xi)'P' (tj)l. 
t jerj  

I 
LEMMA: 5. Suppose. that the .field X and its derivatiue 

I , contjnuous paths. 'Then 
, I 

I .  

: 
~ ( 4 ~ )  s 1 ~ - t . ( ~ ~ ) d t , +  [ ~ : ( ~ ~ ) d t ~ .  

i * ~ 
. . f 1 iz 

. . 

x have 
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COROLLARY 1.  W t h  the scime assumptions 

COROLLARY 2. Suppose that X is a Gaussian ,field, with covariance function 
r, which is normalized (r(0) = - f S ( O )  = 1). If, for U, 0 ER, 

for u and v in a neighbourhood V of 0 and C and C' positive constants, rlzrn 
E [Y (XX)lk < m for every k = 1, 2, . . . 

Proof .  -The proof follows from Lemma 5 and Theorem 411 in [4]. 
COROLLARY 3. S ~ ~ p p o s c ~  .Y has a.s. class CP paths ( p  2 2) and 

(i) For every t ,  E &, (x2(f I  1. x 2 ( t l ) )  has joint density ungorrmly bounded by C 
andfor every t1 S T , ,  (X1 ( r ? ) .  X '  ( tZ j )  has joint density uniformly bounded by C .  

(ii) Let rn < 2 p  - 2 if tlzere is an r > 2m/(2p - 2 - m) such that E IZ;Ir < x: 
for every p = 1 ,  2, . . . a d  i = 1, 2. 

Then 
IE IY(fhJIm] 'Im < Ll (GI (E IZ;('] 'Im+ L, IT,[ (E IZbIr] 'Irn f L 3 < m ,  

where L , , L, and Lj depend only on p, rq r, I TI and C .  
COROLLARY 4. if X has a s .  class C" paths, if(i) of Corollary 3 holds and 

E 1Zal < m for every p = 1 ,  2 ,  . . . and i = 1 ,  2, then 

E ( ) ]  for euery m = l , 2 , . .  

Proofs of Corollaries 3 and 4 follow from Lemma 4 and Corollaries 3 
and 4 of Wschebor [ l l j  (p. 36). 

P r o  of of Lemma 5. The proof is completely geometrical and the same 
idea can be extended for more general situations (dimension > 2). 

Suppose 4 5 ,  is a polygonal. Every segment of %, has length less than the 
sum of the lengths of its projections over the coordinates axes. If we take a 
partition in every interval T,  and T,, the length of every semi-interval 
contributes to the sum every time the i-th section process determined by ti in 
the semi-interval, crosses the level x in the interval ?;.(i # j ] .  Therefore 

N M 

2(%J < 1 N: (T,) [ t i  - t i -  l] + C N: ( T )  [t! - t;-l-J, 
k =  1 h= 1 

where (ty,  t i ,  .. ., t?) and it:, t i ,  . . ., t f )  are both partitions of T,  and T,,  
respectively. Lemma 5 follows by taking the limit when the sizes of the 
partitions tend to zero. 
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